New research hints that liquid water might be common at the solar system’s edge
A suspected subsurface ocean on Pluto might be old and deep.
New analyses of images from NASA’s New Horizons spacecraft suggest that the dwarf planet has had an underground ocean since shortly after Pluto formed 4.5 billion years ago, and that the ocean may surround and interact with the rocky core.
If so, oceans could be common at the solar system’s edge — and may even be able to support life. That possibly “transforms the way we think about the Kuiper Belt,” the region of icy objects beyond the orbit of Neptune (SN: 3/27/19), says planetary scientist Adeene Denton of Purdue University in West Lafayette, Ind.
On its pass through the Kuiper Belt in 2015, New Horizons revealed that despite the dwarf planet’s location nearly 6 billion kilometers from the sun, Pluto showed signs of hosting an ocean of liquid water beneath an icy shell (SN: 9/23/16).
How much liquid may lie beneath Pluto’s ground, how long it’s been there, and how much the water may have partially frozen over time is hard to tell from the surface. The new research, which had been scheduled for presentation the week of March 16 at the canceled Lunar and Planetary Science Conference in The Woodlands, Texas, has dug into those questions.
“If there’s an ocean today, it raises the question of, when did that ocean get there?” says planetary scientist Carver Bierson of the University of California, Santa Cruz.
Bierson considered two possible histories for Pluto’s potential ocean. If the dwarf planet had a “cold start,” any subsurface water would first have been frozen before melting under heat from decaying radioactive elements in the dwarf planet’s core, only to partially freeze again over time. In that scenario, Bierson expected to see cracks and ripples across Pluto’s icy shell from the orb’s contraction as the ice melted and then expansion as water refroze. Contracting would make the ice crumple into mountainlike features, while expanding would stretch the ice and create faults and graben.
Bierson’s second scenario envisioned a “warm start” for Pluto, where the ocean would have been liquid for nearly all of Pluto’s 4.5-billion-year existence. In that case, the surface would show only cracks from the sea expanding as it partially froze. And that’s exactly what Bierson and colleagues found in New Horizon’s images, suggesting that Pluto’s liquid ocean is nearly as old as the dwarf planet itself.
“That means maybe Pluto did start off warm,” Bierson says. “Maybe it started with a liquid ocean really early on.”